lunes, 14 de diciembre de 2015

unidad 5

5.1 Pendiente de la recta tangente a una curva

De un curva que es la gráfica de una función  y=f(x), y se p un punto sobre la curva. p es el limite de la pendiente de las rectas que pasan por p y otro punto q sobre la curva cuando se acerca a p.

5.2 Teorema de Rolle


En calculo diferencial, el teorema de Rolle demuestra la existencia de un punto interior en un intervalo abierto para el cual la derivada de una función derivable se anula cuando el valor de ésta en los extremos del intervalo es el mismo. Es generalizado mediante el teorema del valor medio, del que este es un caso especial. Es uno de los principales teoremas en cálculo debido a sus aplicaciones.



Si es una funcion en la que cumple (i) f es una funcion (ii) f es diferenciable en el intervalo abierto (a,b) 
(iii) (a) =0 y f(b) = 0


5.3 Teorema de valor medio


En cálculo diferencial, el teorema de valor medio (de Lagrange), teorema de los incrementos finitos, teorema de Bonnet-Lagrange o teoría del punto medio es una propiedad de las funciones derivables en un intervalo. Algunos matemáticos consideran que este teorema es el más importante del cálculo (ver también el teorema fundamental del cálculo integral). El teorema no se usa para resolver problemas matemáticos; más bien, se usa normalmente para demostrar otros teoremas. El teorema de valor medio puede usarse para demostrar el teorema de Taylor ya que es un caso especial.



5.4 Criterio  de la segunda derivada 


El Criterio o prueba de la segunda derivada es un teorema o método del cálculo matemático en el que se utiliza la segunda derivada para efectuar una prueba simple correspondiente a los máximos y mínimos relativos.

Se basa en el hecho de que si la gráfica de una función f es convexa en un intervalo abierto que contiene a f´(c)=0,f(c), y   debe ser un mínimo relativo de  . De manera similar, si la gráfica de una función es cóncava hacia abajo en un intervalo abierto que contiene a f´(c)=0,f(c) y   debe ser un máximo relativo de f.

Sea una función tal que f´(x)=0 y la segunda derivada de existe en un intervalo f abierto que contiene a  x.

1. Si f´´(x)>0 , entonces   tiene un máximo relativo en  .

2. Si f´´(x)<0 , entonces  tiene un mínimo relativo en .

1. Si f´(x)=0 , entonces el criterio falla. Esto es,f quizás tenga un máximo relativo en (x,f(x)), un mínimo relativo en  o ninguno de los dos. Tomar como ejemplo la función f(x) = x³. En tales casos, se puede utilizar el criterio de la primera derivada o el criterio de la tercera derivada.




 5.5 Análisis de la variación de funciones


Cuando la variación total de cualquier función particular es finita, en ese caso, esa función se conoce como Función de Variación Acotada, que puede ser abreviada como función BV (Bounded Variation por sus siglas en inglés). El gráfico correspondiente de la función BV se dice entonces que se comporta bien en un sentido preciso. La función BV tiene amplias aplicaciones en el campo de las matemáticas, y es utilizada en algunos de los teoremas más importantes, tal como son los Teoremas de Fourier. En el caso de la funciones continuas que contienen sólo una variable, la variación acotada implica la distancia finita cubierta por un punto a lo largo del eje y. Otra clasificación establece que las funciones de variación acotada, tienen la propiedad de intervalo cerrado, son las funciones que se pueden establecer como la diferencia entre dos monótonas acotadas.

La variación Acotada de una función determinada en el intervalo [x, y] puede ser establecida como


Donde S es el conjunto acotado:

La variación resulta ser infinita si el conjunto no es acotado. El supremo de S puede ser llamado también como Variación Total o sólo la variación de f y se denota como V (f; x, y) o simplemente V (x). Existen ciertos teoremas que pueden ser útiles para el análisis de la variación de la función: 

1). Si en el conjunto [x, y], la función está incrementando, en ese caso, es la función de variación acotada en el conjunto [x, y] y consecuentemente V [g [x, y]] = g(y) – g(x).

2). Si en el conjunto [x, y] la función es constante, entonces es la función de variación acotada en el conjunto [x, y] y entonces V [g [x, y]] = 0. 

Por ejemplo, la función g(r) = c es una función de variación acotada constante en el intervalo [x, y]. 
| g (ri) – g (ri - 1)| = 0 por cada partición del conjunto [a, b]. Por tanto, V (g, [x, y]) = 0.


3) En el conjunto [x, y] si, g y f son las funciones de variación acotada y c es constante, en ese caso
a). g es una función de variación acotada en el intervalo [x, y].
b). g es una función de variación acotada en cada subintervalo cerrado del intervalo [x, y].
c). cg es también una función BV en el conjunto [x, y].
d). g + f y g –f son BV en el conjunto [x, y]
e). gf es también BV en el conjunto [x, y].

Algunos datos más útiles acerca de estas funciones especiales se pueden establecer como que una función de variación acotada se puede expresar también por la divergencia de 2 funciones crecientes.

Del mismo modo, todas las funciones totalmente continuas son de naturaleza BV, sin embargo, no es necesario que todas las funciones continuas BV deban ser totalmente continuas.

La función f puede ser considerada como BV en el conjunto [x, y] si, la derivada de f se encuentra acotada en [x, y].

 Además, cuando dos funciones variación acotada se multiplican entre sí, entonces la resultante es también una función de variación acotada.

Hay algunas propiedades básicas que son seguidas por las Funciones de Variación Acotada:

1) Las Funciones de Variación Acotada pueden tener discontinuidad de primer tipo, es decir, discontinuidad de salto.



5.6 Problemas de optimización y de tasas relacionadas.





La optimización se refiere al tipo de problema que se ocupa de la determinación de la forma más apropiada para realizar cierta tarea. Con el fin de resolver estos problemas, se calculan los valores mínimos y máximos de la función. Estos incluyen encontrar la distancia mínima para llegar a un punto, el costo mínimo para hacer determinada operación, etc. La función cuyo máximo o mínimo necesita determinase por lo general está sujeta a ciertas restricciones que deben tomarse en cuenta.
Estos problemas son diferentes a los problemas utilizados para encontrar los valores mínimos o máximos locales. Los Problemas de optimización sólo se ocupan de los valores máximos o mínimos que una función puede tomar y no del mínimo o máximo en un intervalo. Es decir, la optimización busca el mínimo o máximo global (absoluto) y no el local. El mínimo o máximo absoluto es el mayor entre el mínimo o máximo local, respectivamente.
Puede haber casos, donde el mínimo o máximo global no existe para una función. En estos el dibujo de la gráfica para la función correspondiente puede ayudar en gran manera.
Hay algunos pasos que deben seguirse con el fin de desglosar un problema de optimización:
1). Lo primero y más importante es identificar las vairables y constantes de la función. Esto ayuda a determinar la parte de la función que será minimizada o maximizada.
2). Escribir la fórmula adecuada para la función particular, para lo cual tenemos que calcular el mínimo o máximo.
3). Ahora, la fórmula será escrita en términos de una sola variable, es decir, f®.
4). Establezca la diferenciación de f® a 0, f ‘® = 0, y resuelva a través de observar todas las  limitaciones y otros valores críticos para encontrar los valores extremos.
Por ejemplo, considere la función, g ® = -r2 + 4r – 2. Y siendo el intervalo en el cual el valor máximo será encontrado [0, 1]. Calculando g ‘® se obtiene,
g’ ® = −2r + 4 = 0
Por lo tanto, 2 viene a ser un valor crítico, luego reemplazando el 2 en la función g (2) = 2. Ahora sustituyendo uno por uno los valores del intervalo en el lugar de r, obtenemos,
g (0) = −2 g (1) = 1
Se puede observar, que el valor máximo de g® en [0, 1] es 2.
Un tipo parecido de problema es el problema de las tasas relacionadas. Se trata de un problema en el que se proporciona la tasa de variación de al menos una variable de la función y en el problema se necesita buscar la otra tasa de variación.
También hay ciertas reglas simples para resolver estos problemas:
Considere que f(a) sea una función con dos variables a y b, las cuales cambian con el tiempo y la tasa de variación de a es dada con el tiempo, es decir,  dx/dt

1). En primer lugar, encontrar la derivada de f(a), es decir, f ‘(a)
2). Ponga el valor de a en la ecuación
3).Entonces multiplíquelo con dx/dt  para obtener dx/dt
Aplicar las reglas en un ejemplo proporcionará una mejor comprensión:
Suponga que la pregunta dada dice lo siguiente: Se está bombeando aire a un globo esférico de 4 cm de radio a 5 cm3 / seg. Entonces, el ritmo de cambio del radio del globo necesita ser calculado.
Se puede observar que el radio y el volumen son las variables de las funciones correspondientes. 
dx/dv es dada y es igual a 5 cm3/seg y necesita encontrarse. Como dxr/dv V= 4 r3 / 3. 
Diferenciando ambos lados, se obtiene π . Ahora sustituyendo el valor de en esta ecuación, se obtiene dr/dt=7/64π 
cm /seg.

No hay comentarios:

Publicar un comentario